

Introduction to PRECON™

A New Device for Automating and Monitoring Remote Ischemic Conditioning

Morteza Naghavi, M.D. AHA 2010 - Chicago

Ischemic Conditioning Therapeutics, Inc.

Remote Ischemic Conditioning:
The time has come to harness its tissueprotective powers in patients.

Ischemic Conditioning

Remote Ischemic Conditioning (RIC)

Non-Invasive

Novel Applications

Short-term Therapy

- PCI
- CABG
- Other Cardiac Surgery (e.g. valve)
- Major Surgery
 - Thoracic (e.g. lung lobectomy)
 - Abdominal (e.g. pancreas)
 - Vascular (e.g. aortic aneursym)
- Chemotherapy (neurotoxic)
- Contrast dye injection (nephrotoxic)

Long-term Therapy

- Hypertension
- Diabetic neuropathy
- Cardiovascular fitness
- Vascular reactivity
- Pulmonary hypertension

PRECON™ Features

- Non-invasive
- Automated, Easy to operate
- Programmable
- Portable
- Personalized RIC protocol
- Real-time data acquisition
 - Rate of blood deoxygenation:
 Artificial Pulse Oximetry (APO)
 - Temperature:

Room and Fingertip RTD Temperature Sensors

Vascular reactivity:

Based on fingertip temperature curve data

PC connectivity and data analysis software

PRECON™ Design Concept

PRECON™ Prototype V2.1

Blood Pressure Cuff

Real-time Data Acquisition of Unique Measurement Parameters

- Rate of blood deoxygenation:
 - Artificial Pulse Oximetry (APO)
- Temperature:
 - Room and Fingertip RTD Temperature Sensors
- Vascular reactivity:
 - Based on fingertip temperature curve data

Artificial Pulse Oximetry

The rate of tissue deoxygenation differs between individuals.

Near-infrared Spectroscopy (NIRS)

Expensive

The rate of tissue deoxygenation differs between individuals.

Artificial Pulse Oximetry (APO)

- Standard pulse oximetry requires a pulsatile signal to calculate blood oxygen saturation. Cuff occlusion -> no pulse -> can't determine O2 sat
- Artificial pulse oximetry
 - Cuff placed at base of index finger
 - During cuff-occlusion periods, finger cuff is "pulsed" at 72/sec frequency
 - O2 sat readings still obtainable

Standard Pulse Oximetry

Normal pulse waveforms measured by fingertip PPG sensor

Loss of pulsatile signal during onset of cuff occlusion precludes calculation of O2 saturation

Artificial pulse waveforms generated by APO method

Artificial Pulse Oximetry (APO)

Preconditioning, Perconditioning, Postconditioning

"Per-Conditioning" with PRECON™

Acute Coronary Syndromes Stroke

Novel Clinical Applications for Repeated RIC Treatments

- Hypertension
- Cardiovascular fitness and reactivity
- Diabetic neuropathy